RECITATION 7
 IMPLICIT DIFFERENTIATION

James Holland

2019-10-15

Section 1. Exercises

Exercise 1

Suppose $y^{2}+2 x y+x^{2}=5$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of y and x.

Solution :

Implicit differentiation yields that $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y+2 x=0$. Hence solving for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ gives $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-x-y}{x+y}=-1$ for $x+y \neq 0$.

- Exercise 2

Differentiate $f(x)=x^{2 x}$ using implicit differentiation.

Solution :

Taking the natural \log of both sides, we have that $\ln (f(x))=2 x \ln (x)$. Implicit differentiation the yields $\frac{1}{f(x)} f^{\prime}(x)=2 \ln (x)+2 x \frac{1}{x}$, equivalently,

$$
f^{\prime}(x)=(2 \ln (x)+2) f(x)=(2 \ln (x)+2) x^{2 x}
$$

- Exercise 3

Find the tangent line to $x^{2}+y^{2}=25$ at the point $(3,4)$ using implicit differentiation.

Solution :

Implicit differentiation yields that $2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$ and hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2 x}{2 y}=-x / y$ for $y \neq 0$. At $(3,4)$, the tangent line then has slope $-3 / 4$. Given the point $(3,4)$, this yields the line described by

$$
y-4=\frac{-3}{4}(x-3)
$$

- Exercise 4

Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of y and x, where $\sin (y)=x$.

Solution .:

Implicit differentiation yields that $\cos (y) \cdot \frac{\mathrm{d} y}{\mathrm{~d} x}=1$ and hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\cos (y)}=\sec (y)$.

— Exercise 5

Consider $x \cdot y=x+y$. Where is the tangent line horizontal?

Solution :

The tangent line is horizontal iff $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$. Using implicit differentiation, we have $x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=1+\frac{\mathrm{d} y}{\mathrm{~d} x}$, and thus $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y-1}{1-x}$. This is 0 iff $y=1$, i.e. $x=x+1$, which is impossible. Therefore the tangent line is never horizontal.

Exercise 6

Take $y^{2}+2 y+4=x^{2}+2 x+4$. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.

Solution .:

Using implicit differentiation, $\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot(2 y+2)=2 x+2$. Hence $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x+2}{2 y+2}=\frac{x+1}{y+1}$.

Exercise 7

Take $e^{y}=x$. We know that then $y=\ln (x)$ has $\frac{\mathrm{d} y}{\mathrm{~d} x}=1 / x$. Prove this using implicit differentiation.
Solution :
Using implicit differentiation, $e^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$, meaning $\frac{\mathrm{d} y}{\mathrm{~d} x}=1 / e^{y}=1 / x$.

Section 2. The Midterm

Question 1

Evaluate the limit or determine it does not exist: $\lim _{x \rightarrow 3}\left(\frac{x^{2}-2 x-3}{x-3}\right)$.

Solution .:

This limit is equal to

$$
\lim _{x \rightarrow 3}\left(\frac{x^{2}-2 x-3}{x-3}\right)=\lim _{x \rightarrow 3} \frac{(x-3)(x+1)}{x-3}=\lim _{x \rightarrow 3}(x+1)=3+1=4
$$

Question 2

Find the x-coordinate of each point on the graph of $y=\left(x^{2}-15\right) e^{x}$ where the tangent line is horizontal. Show all work.

Solution .:

The slope of the tangent line is just $\frac{\mathrm{d} y}{\mathrm{~d} x}$. So the tangent line is horizontal iff $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$. The product rule yields that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x e^{x}+\left(x^{2}-15\right) e^{x}=\left(x^{2}+2 x-15\right) e^{x}$. This is 0 iff $x^{2}+2 x-15$ is 0 , because e^{x} is never 0 . Note that $x^{2}+2 x-15=(x+5)(x-3)$ so that this is 0 iff $x=-5$ or $x=3$.

Question 3

Calculate $f^{\prime}(x)$ after calculating the derivative, do not simplify your answer: $f(x)=\ln (x) \tan (x)$

Solution :

By the product rule, $f^{\prime}(x)=\ln (x) \cdot \frac{\mathrm{d}}{\mathrm{d} x} \tan (x)+\tan (x) \cdot \frac{\mathrm{d}}{\mathrm{d} x} \ln (x)$. We know $\frac{\mathrm{d}}{\mathrm{d} x} \ln (x)=\frac{1}{x}$, and $\frac{\mathrm{d}}{\mathrm{d} x} \tan (x)=$ $\sec ^{2}(x)$ (which can be derived by the quotient rule along with the derivatives of sine and cosine). Hence $f^{\prime}(x)=$ $\ln (x) \sec ^{2}(x)+\tan (x) / x$.

Question 4

Evaluate the limit or determine it does not exist: $\lim _{x \rightarrow 2}\left(\frac{\sqrt{x+7}-3}{x-2}\right)$.

Solution .:
Multiplying and dividing by the conjugate, we get

$$
\begin{aligned}
\lim _{x \rightarrow 2}\left(\frac{\sqrt{x+7}-3}{x-2}\right) & =\lim _{x \rightarrow 2}\left(\frac{|x+7|-9}{(x-2)(\sqrt{x+7}+3)}\right) \\
& =\lim _{x \rightarrow 2}\left(\frac{x-2}{(x-2)(\sqrt{x+7}+3)}\right) \\
& =\lim _{x \rightarrow 2}\left(\frac{1}{\sqrt{x+7}+3}\right) \\
& =\frac{1}{\sqrt{9}+3}=\frac{1}{6} .
\end{aligned}
$$

Question 5

Evaluate the limit or determine it does not exist: $\lim _{x \rightarrow 0}\left(\frac{3 x}{\sin (7 x)}\right)$.

Solution . $:$

Since $\lim _{x \rightarrow 0} \sin (x) / x=1$ and $\lim _{x \rightarrow 0} 7 x=0$, it follows that $\lim _{x \rightarrow 0} \sin (7 x) /(7 x)=1$. Therefore,

$$
\begin{aligned}
\lim _{x \rightarrow 0}\left(\frac{3 x}{\sin (7 x)}\right) & =\lim _{x \rightarrow 0}\left(\frac{7 x}{\sin (7 x)} \cdot \frac{3}{7}\right) \\
& =\frac{3}{7} \lim _{x \rightarrow 0}\left(\frac{7 x}{\sin (7 x)}\right)=\frac{3}{7}
\end{aligned}
$$

Question 6

Calculate $f^{\prime}(x)$. After calculating the derivative, do not simplify your answer: $f(x)=\sqrt{\cos \left(10+x^{4}\right)}$.

Solution .:

$$
f^{\prime}(x)=\frac{1}{2} \cos \left(10+x^{4}\right) \cdot\left(-\sin \left(10+x^{4}\right)\right) \cdot\left(4 x^{3}\right)
$$

Question 7

Calculate $f^{\prime}(x)$. You must use the limit definition of derivative to recieve any credit. Show all work: $f(x)=$ $2 x-x^{3}$.

Solution .:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)-(x+h)^{3}-\left(2 x-x^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x+2 h-\left(x^{3}+3 x^{2} h+3 x h^{2}+h^{3}\right)-2 x+x^{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h-3 x^{2} h-3 x h^{2}-h^{3}}{h} \\
& =\lim _{h \rightarrow 0} 2-3 x^{2}-3 x h-h^{2} \\
& =2-3 x^{2}-0-0=2-3 x^{2} .
\end{aligned}
$$

Question 8

Find all solutions, if any, to the following equation:

$$
\ln \left(\frac{x^{2}}{3-x}\right)-\ln (x)=\ln \left(\frac{4 x}{10+x}\right)
$$

Solution :

Note that $\ln \left(\frac{x^{2}}{3-x}\right)-\ln (x)=\ln \left(\frac{x}{3-x}\right)$ for all x where these are defined. Therefore, if the equation holds,

$$
\begin{aligned}
& \ln \left(\frac{x}{3-x}\right)=\ln \left(\frac{4 x}{10+x}\right) \\
\rightarrow & \frac{x}{3-x}=\frac{4 x}{10+x}
\end{aligned}
$$

Since the equation holds, $\ln (x)$ is defined, i.e. $x \neq 0$. Therefore, this implies

$$
\begin{aligned}
& \rightarrow \frac{1}{3-x}=\frac{4}{10+x} \\
& \rightarrow 10+x=12-4 x \rightarrow 5 x=2 \rightarrow x=2 / 5
\end{aligned}
$$

And we can check that this holds rather easily.

Question 9

Find the absolute minimum value and absolute maximum value of f on the given interval. Show all work: $f(x)=$ $(4-x) e^{x}$ on [0, 4]. Hint: $2<e<3$.

Solution : :

By the product rule, $f^{\prime}(x)=-e^{2}+(4-x) e^{x}=(3-x) e^{x}$. This is 0 iff $3-x=0$, i.e. $x=3$. Since $f^{\prime}(x)$ is always defined, $x=3$ is the only critical point of f. So we merely need to test the endpoints and $x=3$:

$$
f(0)=(4-0) e^{0}=4 \quad f(3)=(4-3) e^{3}=e^{3} \quad f(4)=(4-4) e^{4}=0
$$

So clearly 0 is the minimum value of f on $[0,4]$ (and it occurs at $x=4$). Since $e^{3}>2^{3}>4, e^{3}$ is the maximum value of f on $[0,4]$ (and it occurs at $x=3$).

Question 10

Find all the critical numbers of $f(x)=x-\ln (x)$ or determine that there are no critical numbers [the professor write "critical number" instead of the more standard "critical point"].

Solution \therefore.

$f^{\prime}(x)=1-\frac{1}{x}$. This is 0 iff $1=1 / x$, i.e. $x=1 . f^{\prime}(x)$ is undefined only when $x=0$, but this isn't in the domain of f^{\prime} anyway, so it's not a critical point. Hence $x=1$ is the only critical point.

Question 11

Find the value of k that makes f continuous at $x=-2$ or determine that no such value of k exists. Show all work. You must use limits and proper notation to receive full credit:

$$
f(x)= \begin{cases}3 x+k & \text { if } x<-2 \\ 4 & \text { if } x=-2 \\ k x^{3}+3 & \text { if } x>-2\end{cases}
$$

Solution .:

f will be continuous at -2 iff $f(-2)=\lim _{x \rightarrow-2} f(x)$, which then requires $\lim _{x \rightarrow-2^{-}} f(x)=$ $\lim _{x \rightarrow-2^{+}} f(x)=f(-2)$. Note that

$$
f(-2)=4
$$

$$
\begin{aligned}
\lim _{x \rightarrow-2^{-}} f(x) & =\lim _{x \rightarrow-2^{-}} 3 x+k=k-6 \\
\lim _{x \rightarrow-2^{+}} f(x) & =\lim _{x \rightarrow-2^{+}} k x^{3}+3=-8 k+3 .
\end{aligned}
$$

Hence we require $k-6=4=-8 k+3$. But $k-6=4$ implies $k=10$ while $-8 k+3=4$ implies $k=1 / 8 \neq 10$. Therefore, no such value of k can exist, and f can never be continuous at -2 .

Question 12

Find an equation of the line tangent to the graph $y=x^{3}-4 x^{2}+5 x+1$ at $x=1$. Show all work. You may give any form of the equation of a line.

Proof :.
When $x=1, y=1-4+5+1=3$. So we have the point $(1,3)$. All that we require is the slope of the line, which is given by $f^{\prime}(1)$:

$$
f^{\prime}(x)=3 x^{2}-8 x+5 \rightarrow f^{\prime}(1)=3-8+5=0
$$

Hence by point-slope form, the equation of the tangent line can be written $y-3=0 \cdot(x-1)$, or $y=3$.

Question 13

Calculate $f^{\prime}(x)$. After calculating the derivative, do not simplify your answer: $f(x)=\left(\frac{x^{3}-x}{x^{2}+7}\right)^{2 / 3}$.
Proof .:
Using the chain and quotient rules,

$$
f^{\prime}(x)=\frac{2}{3}\left(\frac{x^{3}-x}{x^{2}+7}\right)^{-1 / 3} \cdot\left(\frac{\left(3 x^{2}-1\right) \cdot\left(x^{2}+7\right)-\left(x^{3}-x\right) \cdot(2 x)}{\left(x^{2}+7\right)^{2}}\right)
$$

